

CITYLAB - Evaluation

CIVITAS 2020 - Evaluation Coordination Group meeting Sara Verlinde - VUB-MOBI

27 September 2017 – Torres Vedras, Portugal

CITYLAB Living Labs

- Challenges: air quality, CO2 emission free 2030, livability, accessibility, noise
- Many demonstrations, but limited lasting implementations
- A new approach required, from individual, to freight partnerships, to city logistics living labs
- Collaboration industry, local authorities and research

CITYLAB implementations

Axes for intervention	Implementation	City	Partner	
Highly from an out od lost will	Growth of consolidation and electric vehicle use	London	TNT and Gnewt Cargo	
Highly fragmented last-mile deliveries in city centres	City centre micro-hubs and clean vehicles	Amsterdam	PostNL	
	Increasing load factors by utilising spare van capacity	Brussels	Procter & Gamble	
Inefficient deliveries to large freight attractors and public	Joint procurement and consolidation	Southampton	Meachers Global Logistics	
administrations	Common logistics functions for shopping centres	Oslo	Steen & Strøm	
Urban waste, return trips and recycling	Integration of direct and reverse logistics	Rome	Poste Italiane, Meware	
Logistics sprawl	Logistics hotels	Paris	SOGARIS	

What do we evaluate?

- Living lab process
 - Collecting experiences and lessons learnt
 - Every six months, for each CITYLAB city
 - Will be included in CITYLAB Handbook for City Logistics Living Laboratories

What do we evaluate?

- ➤ How well do the 7 CITYLAB implementations perform in their specific context?
 - Impact on load factors and vehicle movements
 - Economic viability
 - Costs and benefits to society

What do we evaluate?

- Could the successful ones also be successful in one or more other CITYLAB living labs?
 - Willingness to pay by users
 - Tool: analysis of behavioural response or willingness to pay by users
 - Estimate potential for up-scaling
 - Tool: (S)CBA for scaled solutions
 - Tool: Business Model Analysis
 - Tool: Multi-Actor Multi-Criteria Analysis
 - Assessment of roll-out potential
 - Tool: Transferability analysis based on TIDE methodology

EVALUATION OBJECTIVES ACT/DECIDE COMPARE **TRANSFER ADOPTION PROCESS CONTEXT IMPACT**

FILEDS OF EVALUATION

Data collection templates

Α		C	D	E E	F	G	Н		J	K	L	M		
Da	ta Collection Tem	plate												
Nr.	Indicator		Data need per indicator	Definition	Data unit	Measurement method	Objective	Business as usual	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Remark/explanation	
4-11	MPACT INDICATORS				100		1					T.	S	
4.1 -	- Environment													
37 Air q			Sulphur dioxide (SO2) concentration	SO2 level is defined as the average hourly (or peak/off- peak) SO2 concentration over a full year.	µg/m3 (or ppmv, parts per million by volume)	monitoring stations, or							Difference cannot be m small	
	Air quality		Nitrogen dioxide (NO2) concentration	NO2 level is defined as the average hourly (or peak/off- peak) NO2 concentration over a full year.									Difference cannot be me small	
			Particulate matter (PM2.5 and PM10) concentration	Particulate level is defined as the average hourly (or peak/off-peak) PM10 and PM2.5 (if possible) concentration over a full year.									Difference c annot be me small	
			'Sulphur dioxide (SO2) emissions	SO2 emissions is defined as the average SO2 emissions per vehicle-km per shipment by vehicle type and fuel type.	gram per	Several possibilities,		0.024	1				- Calculate from inform	
			Nitrogen dioxide (NO2) emissions	NO2 emissions is defined as the average NO2 emissions per vehicle-km per shipment by vehicle type and fuel type.		e. gram per of shipment c	locally. Some examples: - Calculated on the basis of fuel / energy		16.15	6				- Calculate from inform
			Particulate matter (PM2.5 and PM10) emissions	Particulate emissions is defined as the average particulate emissions -per vehicle-km per shipment by vehicle type and fuel type.			consumption (54) - Calculated from information on vehicle		1.634					- Calculate from inform
	Carbon dioxide	greenhouse gas (as it contributes to about 80% of total EU greenhouse gas emissions) and is		CO2 emissions is defined as the average CO2 emissions per vehicle-km by vehicle type and fuel type.		kms and emission numbers (STREAM 2011).		3895	6				- Calculate from informa	
	Noise level	The indicator 'Noise level' is used to capture the outdoor sound level caused by human activities,	Noise level	The main noise indicators for noise mapping are Lday, Levening, Inight and Iden (day-evening-night). These are long-term averaged sound levels, determined over all the correspondent periods of a year.	dB(A)	Noise mapping using simulation tools.							Difference cannot be mo small	
39						Calculated on the basis of noise peak moments							Deliveries will take plac in a certain street or nei	

Dashboards

Dashboards

Business Model Canvas

Key partners	Key activities	Value proposition	Customer relationship	Customer segments		
PostNL Customers and shippers City of Amsterdam Bicycle manufacturers	PostNL has to supply the micro- hubs. This is done by trucks	PostNL is contributing to the reduction of emissions and the use of fossil fuels.	Customers and Shippers face better on time performances, less stressed PostNL	Bike Manufacturers expand their customer segment by trial and error of new		
manufacturers	Key resources		employees but also face less	electric freight bicycle models.		
	PostNL has changed its resources from vans to electric freight bicycles	Externalities The government has the	flexibility due to the limited capacity of the bicycle	This enables upscaling of freight bicycles outside postal services.		
		advantage of less noise, emissions and contribution to congestion.	Channels No change			

PostNL has the advantage of a lower leasing price and less diesel usage. Therefore costs are saved.

Revenue streams

PostNL faces no changes in the revenue streams.

MAMCA

Impact of upscaling

Challenges data collection

- Collecting economic indicators
- Delays/changes in implementations
- Combination of qualitative and quantitative input from partners

Contact us!

Dr. Sara Verlinde +32 2 629 23 62 Sara. Verlinde@vub.be Building B (B2.17)

Prof. dr. Cathy Macharis +32 2 629 22 86 Cathy.Macharis@vub.be Building B (B2.20)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 635898.

www.citylab-project.eu

