

14th-16th June 2017

JW Marriott Phuket Resort and Spa Hotel, Phuket Island, Thailand

Integrating direct and reverse logistics in a "living lab" context: evaluating stakeholder acceptability and the potential of gamification to foster sustainable urban freight transport

Gatta V.

OUTLINE

- Introduction and motivation
- Case study
- SP survey
- Econometric results
- Scenario analysis
- Implications
- Future steps
- Conclusion

Introduction and motivation (1/2)

- EU's efforts to develop a sustainable and competitive economy rely on a transition towards circular economy
- Waste management is a major issue for the sustainability of urban areas
- The need to recycle has implications on logistics negatively affecting the environment
 - Door-to-door systems imply a large # of trucks and fragmented collection
 - Using ad-hoc collection points implies costly infrastructure interventions & greater effort/involvement of citizens providing dedicated trips
- Transport management is critical...innovative solution:
 - Integrating direct and reverse logistics flows with the aim of increasing the amount of recycled materials while also minimising the amount of CO2 emissions (closed loop)

Introduction and motivation (2/2)

- To increase the success of a new solution ex-ante behavioural analysis is needed
- Knowing behavioural levers capable of stimulating potential users to participate in the initiative is fundamental
- Stated preference survey to:
 - investigate users' acceptability and behaviour change with respect to UFT solutions
 - identify strategic/operational pre-requisites for the proposed solution to be adopted
 - estimate the amount of recycled materials to be collected
 - estimate the expected environmental benefits

Case study (1/2)

Case study (2/2)

- The main idea of Rome LL is to involve the national postal operator in the pick-up, via electric vehicles, of recycled materials during the same transportation route.
- As a first step, an innovative process of recycled materials collection (clean waste), integrating direct flows (i.e. mail delivery) with reverse flows (i.e. plastic caps) is tested in a small scale implementation involving large attractors (i.e. University buildings).
 Department 4
- Why plastic caps?
 - Feasibility from the industrial point of view
 - Easily recyclable&economic type of plastic
 - Existing collection system at UR3 not sustainable/efficient

Collection point UR3 Poste Distribution Centre Department 3 Department 2

- Sample: 597 respondents (students, teachers, administrative staff)
- Preliminary qualitative analysis \rightarrow 5 qualitative attributes (2 levels each)
- (1) aim of the initiative (to improve UR3 services/charity), (2) capsthrowing mode (one cap/more caps per time), (3) transport system used (environmentally/non environmentally friendly), (4) probability to find boxes full (low/ high), (5) gamification (yes/no).
- Blocking strategy
- 4 choice tasks...
- \rightarrow full factorial design covered

	Option A	Option B
Aim of the initiative	improve UR3 services	charity
Caps-throwing mode	more caps per time	one cap per time
Transport system used	environmentally friendly	non environmentally friendly
Prob. to find boxes full	high	low
Gamification	no	yes
Choice	\bigcirc	\bigcirc

Econometric results (1/2)

Multinomial logit model

MNL results for the whole sample

Variable	Description	Coefficient
IMPROVE	Improve UR3 services	-0.037
ONECAP	One cap per time	0.012
ENVIRON	Environmentally-friendly transport system	0.147***
PROBLOW	Low probability to find boxes full	-0.0147
GAMIF	Gamification yes	0.084***

Significance level: ***=1%; **=5%; *=10%

Econometric results (2/2)

Multinomial logit models...naïve preference heterogeneity

Variabla	Department I	Department 2	Department 3	Department 4
variable	(n= 180)	(n= I34)	(n= 178)	(n= 105)
IMPROVE	-0.024	0.094**	-0.012	-0.069
ONECAP	-0.069*	-0.05 I	-0.044	0.071
ENVIRON	0.081**	0.161***	0.251***	0.088*
PROBLOW	0.073*	-0.048	0.093**	-0.002
GAMIF	0.035	0.162***	0.111***	0.038

MNL results per department

Significance level: ***=1%; **=5%; *=10%

Scenario analysis (1/2)

Variable/Scenario	Status quo (worst)	Scenario I	Scenario 2	Scenario 3 (best)
IMPROVE	no	no	no	yes
ONECAP	yes	yes	yes	no
ENVIRON	no	yes	yes	yes
PROBLOW	no	no	no	yes
GAMIF	no	no	yes	yes

- Info on min and max of #plastic caps respondents would collect
- A simple measure of satisfaction degree has been used to estimate #plastic caps potentially collected for each scenario

$$S_{dep_i}(\%) = \frac{U_{scenario} - U_{dep_i}^{min}}{U_{dep_i}^{max} - U_{dep_i}^{min}}$$

Scenario analysis (2/2)

Variable/Scenario	Status quo (worst)	Scenario I	Scenario 2	Scenario 3 (best)
IMPROVE	no	no	no	yes
ONECAP	yes	yes	yes	no
ENVIRON	no	yes	yes	yes
PROBLOW	no	no	no	yes
GAMIF	no	no	yes	yes

Scenario	Expected caps (kg per year)	Expected trips (boxes per year)	Saved CO2eq (kg per year)
Status quo (worst)	1222.4	611	0
Scenario I	1651.4	826	457.3
Scenario 2	1730.3	865	499.3
Scenario 3 (best)	2005.1	1003	556.1

• \uparrow Recycled materials and \downarrow negative impact on environment

- The results obtained were useful to fine-tune the solution proposed according to users' preferences:
 - System pre-dimensioning (e.g. box dimension and placement, vehicles to be used, full box alerting system, etc.)
 - Define the operational procedure

Eco-totems at the buildings' hall

Electric "Free Duck" vehicle for boxes pick-up

Operational procedure

- The second LL cycle will explore the opportunity to:
 - (1) upscale the implementation in terms of flows involved, sites and alternative waste recycled
 - (2) include the solution proposed in the actual logistics process for urban waste management in Rome
- Possible extensions are in line with the recently passed (March 2017) action plan of the Department of the Environment.
 - the solution developed in the first LL cycle will be considered to deal with the logistic needs "re-use factories" have.
- Deploy a real-case user-centered gamification process to stimulate engagement/participation in the recycling initiative.

